L'optimisation de la conception des procédés et des performance

nouvelles Approches de Reconnaissance des Sols et de Conception des Ouvrages géotechniques avec le Pressiomètre

Mesure des modules à faibles déformations

Présenté par Alexandre LOPES alexandre.lopes@setec.com

Journée de restitution des résultats - 26 septembre 2024

- Introduction des présentations de la séance
- Démonstration de la méthode proposée
 - argiles surconsolidées (Merville)
 - sables denses (Dunkerque)
- Eléments de validation expérimentale en conditions contrôlées
- Présentation des méthodes d'interprétation
 - Méthodes semi-empiriques
 - Méthodes analytiques
- Besoins spécifiques pour la mise en œuvre
 - Protocoles d'essais
 - Matériel d'essais
- Conclusion

Synthèse du chapitre 3

Procédures améliorées pour les essais et le calcul des paramètres

Quatre axes principaux de travail

- Détermination des modules de cisaillement à faibles déformations
- Développements sur l'automatisation de l'essai
- Développements sur la mesure de la pression interstitielle
- Développements des procédures d'essai et d'interprétation

Objectif :

- Accroître la fiabilité de l'essai et déterminer des propriétés du terrain qui ne peuvent pas être déterminées avec le matériel et les procédures actuelles
- Travail sur : Matériel d'essais, protocoles d'essais, méthodes d'interprétation

Mesure des modules à faibles déformations

- Objectif : accéder aux modules G à faibles niveaux de déformation, couvrant la plage entre 10⁻⁴ à 10⁻², qui concerne un grand nombre d'ouvrages et n'est aujourd'hui accessible que par corrélations empiriques ou autres types d'essais
- Moyens : mise en œuvre d'une sonde pressiométrique innovante et application de procédures d'essais adaptées pour s'affranchir des limitations identifiées
- Méthode : validation en conditions contrôlées et puis sur sites de référence
- Résultats : Confirmation de la faisabilité et recommandations sur des besoins spécifiques

Procédure avec trois boucles

- Chargement de la cavité par incréments constants de volume, mais aussi possible par paliers de pression
- Boucles réalisées après la pression de fluage pressiométrique définie usuellement
- Un palier de fluage long avant chaque décharge
- Amplitude des boucles de l'ordre de 40% de la pression avant décharge
- Interprétation des modules à partir des boucles
- Estimation possible de E_M et de PIM

Déformation radiale à la paroi de la cavité ε_c

DÉMONSTRATION SUR LES ARGILES SURCONSOLIDÉES DE MERVILLE

- Calcul des modules apparents sécants
- Interprétation : empirique ou analytique
- Cas des argiles (comportement considéré non drainé) : les trois boucles sont similaires

- Argiles des Flandres, 12m de profondeur :
- IP = 40 à 60
- с_и ~ 200 kPa
- Géophysique: G_{0,h} = 50 à 70 MPa
- Autres essais in situ disponibles

20

10

0

2

3

30

40

G_{max,0} (MPa)

60 70 80

Δ

Cross Hole

Down Hole

90 100 110 120

G_M, campagnes précédentes

 G_{M} , cette campagne

50

- Cohérent avec les propriétés de l'argile des Flandres déterminées par ailleurs
- Valeurs de G_{0.h} satisfaisantes
- Taux de décroissance du module cohérent avec les courbes de référence de la littérature

- Même procédure avec trois boucles
 - Dans le cas des sables (comportement drainé) l'essai permet de cerner
 l'influence de la pression sur le module
 - Méthodes d'interprétation essentiellement empiriques
 - Ajustement des déformations et des contraintes
 - Avec (au moins) trois boucles il est possible d'estimer le module de cisaillement associé à l'état initial des contraintes dans le terrain (hypothèse nécessaire sur σ'_{h,0})

Détail des boucles et influence de la pression sur la raideur

- Essais en chambre d'étalonnage
 - Influence négligeable des conditions limites sur G (vérifié par calculs aux éléments finis)
 - Deux types de chambres testés et comparés
 - Essais de répétabilité possibles
 - Conditions œdométriques de cellule
 - $\sigma'_{v,0}$ imposé
 - $\varepsilon_r = 0$ sur la paroi
 - Simulation de la géométrie d'un forage
 - Sable de Fontainebleau NE34, dont les courbes de référence sont connues

Etude paramétrique

- Influence de la densité relative
- Influence de la pression de cavité avant décharge

Validation par comparaison aux courbes de référence (ed M) 350 □ $L 1 - p_{cav.1} = 811 \text{ kPa}$ S1 • L 2- $p_{cav_2} = 1204 \text{ kPa}$ Module maximum et courbe de décroissance △ L 3- $p_{cav,3}$ = 1398 kPa ഗ് 300 ☆ L 4- $p_{cav,4}$ = 1593 kPa 250 ♦ L 5-p_{cav.5} = 1692 kPa cisaillen 200 $I_{D} = 0.50$ 400 400 (MPa) L 1-*p_{cav.1}* = 811 kPa 150 $I_{\rm D} = 0.70$ S2 (lâche) Module de 350 350 Ο L 2- $p_{cav_2} = 1208 \text{ kPa}$ 100 (moyennement dense) L 3-*p_{cav,3}* = 1407 kPa ഗ് 50 300 300 Gamme d'intérê L 4-*p_{cav 4}* = 1607 kPa cisaillement (MPa) 250 250 L 5-*p_{cav,5}* = 1705 kPa 1x10⁻⁵ 1x10⁻³ 1x10⁻² 1x10⁻⁴ 1x10⁻¹ Distorsion moyenne γ_{av} 200 200 Courbes de G_{max} -150 150 dégradation Module de Oztoprak and $G_{max,i}(p_{cav,i}) - S2 - I_D = 0.70$ 100 100 Extrapolation (MPa) 400 Gamme de Bolton (2013) L 1-p_{cav.1} = 806 kPa $G_{maxi}(p_{cavi}) - S3 - I_D = 0.70$ hyperbolique mesure 350 O L 2-p_{cav.2} = 1212 kPa 50 50 $G_{max}(p'_c)$ - Élémentaire - e = 0.656△ L 3- $p_{cav.3}$ = 1414 kPa Gamme d'intérêt ഗ് 300 ☆ L 4-p_{cav.4} = 1611 kPa 0 cisaillement 250 ♦ L 5-p_{cav,5} = 1710 kPa 1x10⁻¹ 300 600 900 1200 1500 1800 1x10⁻⁵ 1x10⁻² 1x10⁻⁴ 1x10⁻³ 0 200 $I_{\rm D} = 0.90$ p_c' , p_{cav} (kPa) Distorsion moyenne γ_{av} 150 (très dense) Module de 100 Comportement $G_{max} = 200 \frac{(2.17 - e)^2}{1 + c} p_c^{\prime 0.47}$ $\overline{G_{max}} =$ 50 Élémentaire de Gamme d'intérêt référence 1x10⁻³ 1x10⁻⁵ 1x10⁻⁴ 1×10^{-2} 1x10⁻¹ Dans ce cas : (Delfosse-Ribay et al., 2004) (Oztoprak et Bolton, 2013) Distorsion moyenne γ_{av} $p'_{c,i} \approx p_{cav,i}$

Eléments théoriques

- Le terrain autour de la cavité est associé à un niveau de déformation et de contrainte variable en fonction de la distance
- Les mesures de p-V (ou p-r) ne concernent que la réponse du massif vues à la paroi
- Elles sont une intégration du comportement global du massif : raideur apparente
- L'interprétation doit en tenir compte dans le cadre de dépendance G(p', γ)
 - Méthodes empiriques
 - Méthodes analytiques
- Cette distinction n'a pas lieu dans le cas hypothétique historique de l'élasticité linéaire

- Méthodes semi-empiriques : transformation des <u>déformations</u> et contraintes
 - Appliquer un coefficient pour transformer la raideur apparente en raideur intrinsèque
 - Calcul de la raideur apparente sur une boucle
 - Détermination du module initial G₀ de la boucle
 - Transformation de la courbe de décroissance
 - Détermination de la déformation de référence γ_{ref}

Méthodes semi-empiriques : transformation des déformations et <u>contraintes</u>

- Appliquer un coefficient pour transformer l'état des contraintes autour de la sonde au début de la boucle p_{c,i} en contrainte moyenne effective p'_i (comportement drainé)
 - Obtenir une loi d'évolution du module maximal G_{max} en fonction de p' \rightarrow G_{max} = f(p')
 - Estimer le module maximal initial sur le terrain $G_0 = G_{max}(\sigma'_{h0})$
 - Estimer l'évolution de la déformation de référence γ_{ref} en fonction de p' \rightarrow G = f(p', γ)

Méthodes semi-empiriques : transformation des déformations et <u>contraintes</u>

 Appliquer un coefficient pour transformer l'état des contraintes autour de la sonde au début de la boucle p_{c,i} en contrainte moyenne effective p'_i (comportement drainé)

Méthodes analytiques : principe (comportement non-drainé)

Hypothèse de comportement hyperbolique du terrain

Méthodes analytiques : Procédure sur essais monotones non drainés : calage

Ajustement par régression linéaire de la partie finale (plastique) de la courbe d'expansion pour déterminer c_u et p_l

 $p_c = p_{\rm l} + c_U \ln(\gamma)$

 c_U est la pente p_l est l'ordonnée à l'origine

permet de retracer la courbe

 $p_c = p_0 + c_U \ln\left(1 + \gamma_c \frac{G_0}{c_U}\right)$

Estimation de p₀

Calcul de G₀ à partir de l'équation constitutive avec c_u et p_{IM}

Détermination de $\gamma_{0.5} = c_u/G_0$, ou $\gamma_{0.72} = 0.385^*\gamma_{0.5}$

Courbe G(y) donnée par le modèle constitutif

Calcul manuel ou à partir de la courbe PMT

$$G_0 = c_u \left(\exp\left(\frac{(p_l - p_0)}{c_u}\right) - 1 \right)$$

$$\frac{G_{sec}}{G_0} = \frac{1}{1 + \frac{G_0 \gamma}{C_U}}$$

Journée de restitution des résultats, 26 septembre 2024

Méthodes analytiques : Procédure avec boucles non drainés : calage

Méthodes analytiques : Procédure avec boucles non drainés : calage

Courbe G(γ) déterminée sur des points de mesures, avec extrapolation sur les très faibles déformations

G0,i= 53.9 MPa

-0,5

-0,6

- Protocoles d'essais : chargement
 - 3 boucles minimum : dépendance de la contrainte et 'redondance'
 - Recommandation de valeurs de pression de début de boucle p_{c,i}
 - Sables: 1/3p_{IM}, 1/2p_{IM}, 3/4p_{IM}
 - Argiles: 1/2p_{IM}, 3/4p_{IM}, 7/8p_{IM}
 - Amplitude de la boucle = 0,4 p_{c,i}
 - Palier de fluage long (3 à 10 min)
 - Evite les boucles ouvertes

- Protocoles d'essais : étalonnages spécifiques
 - Réalisation de calibrages avec cylindres de diamètre variable pour fiabiliser la relation volumediamètre de la sonde
 - Etalonner le comportement de la sonde en décharge-recharge pour caractériser le phénomène d'accommodation de membrane (pour G > 100 MPa)
 - Etalonnages particuliers si besoin (faux sol instrumenté avec jauges de déformation)

- Matériel d'essais : fiabilisation des mesures au niveau de la sonde
 - Améliorations de la membrane
 - Sondes Francis Cour
 B utilisées dans le cadre de la thèse Cifre FUGRO
 - Gaine de contention
 - Mise en place de capteurs dans la sonde
 - Mesures par inductance (Francis Cour ®)
 - Mesures par effet Hall (Aissaoui et al.)
 - Capteurs de pression interstitielle → Présentation de LUTZ
 - Limitation des pertes de charge hydrauliques par l'augmentation du diamètre des tubulures ou adaptation du programme de chargement aux débits / réactivité du système
 - Pilotage de l'essai assisté / automatisé

⁽Karagiannopoulos, 2020)

➔ Présentation d'APAGEO

- ► Les procédures spécifiques d'essai et d'interprétation permettent l'accès
 - Aux modules de cisaillement à faibles niveaux de déformation,
 - À la dépendance du module à l'état de déformation et de contraintes
- ► Un soin particulier doit être porté à la réalisation de l'essai
 - Améliorations matérielles ou calibrages spécifiques
 - Formation requise des opérateurs à l'application du protocole et aux nouveaux enjeux
 - Intérêt de l'automatisation mais aussi de la sensibilisation à la qualité de la mesure
- Des protocoles qui assurent la continuité avec les procédures Ménard
 - Cibler certains horizons lors de la définition de la campagne géotechnique
 - Complémentarité et intégration